Embryonic stem cells.
Embryonic stem cell lines (ES cell lines) are cultures of cells derived from the epiblast tissue of the inner cell mass (ICM) of a blastocyst or earlier morula stage embryos [6]. A blastocyst is an early stage embryo - approximately 4 to 5 days old in humans and consisting of 50-150 cells. ES cells are pluripotent, and give rise during development to all derivatives of the three primary germ layers: ectoderm, endoderm and mesoderm. In other words, they can develop into each of the more than 200 cell types of the adult body when given sufficient and necessary stimulation for a specific cell type. They do not contribute to the extra-embryonic membranes or the placenta. Nearly all research to date has taken place using mouse embryonic stem cells (mES) or human embryonic stem cells (hES). Both have the essential stem cell characteristics, yet they require very different environments in order to maintain an undifferentiated state. Mouse ES cells are grown on a layer of gelatin and require the presence of Leukemia Inhibitory Factor (LIF).[7]
Human ES cells are grown on a feeder layer of mouse embryonic fibroblasts (MEF's) and require the presence of basic Fibroblast Growth Factor (bFGF or FGF-2).[8] Without optimal culture conditions or genetic manipulation[9] embryonic stem cells will rapidly differentiate. A human embryonic stem cell is also defined by the presence of several transcription factors and cell surface proteins. The transcription factors Oct-4, Nanog, and Sox2 form the core regulatory network which ensures the suppression of genes that lead to differentiation and the maintenance of pluripotency.[10] The cell surface proteins most commonly used to identify hES cells are the glycolipids SSEA3 and SSEA4 and the keratan sulfate antigens Tra-1-60 and Tra-1-81.
The molecular definition of a stem cell includes many more proteins and continues to be a topic of research.[11] After 20 years of research, there are no approved treatments or human trials using embryonic stem cells. Their tendency to produce tumors and malignant carcinomas, cause transplant rejection, and form the wrong kinds of cells are just a few of the hurdles that embryonic stem cell researchers still face.[12] Many nations currently have moratoria on either ES cell research or the production of new ES cell lines. Because of their combined abilities of unlimited expansion and pluripotency, embryonic stem cells remain a theoretically potential source for regenerative medicine and tissue replacement after injury or disease.
บทความใหม่กว่า บทความที่เก่ากว่า หน้าแรก
0 ความคิดเห็น:
แสดงความคิดเห็น